题目内容

3.如图,已知∠BAC=$\frac{π}{3}$,正△PMN的顶点M、N分别在射线AB、AC上运动,P在∠BAC的内部,MN=2,M、P、N按逆时针方向排列,设∠AMN=θ.
(1)求AM(用θ表示);
(2)当θ为何值时PA最大,并求出最大值.

分析 (1)在△AMN中,由正弦定理可得:$\frac{AM}{sin(\frac{2π}{3}-θ)}$=$\frac{MN}{sin\frac{π}{3}}$,代入化简即可得出.
(II)在△AMP中,由余弦定理可得:AP2=AM2+22-4AMcos∠AMP,代入化简整理即可得出.

解答 解:(1)在△AMN中,由正弦定理可得:$\frac{AM}{sin(\frac{2π}{3}-θ)}$=$\frac{MN}{sin\frac{π}{3}}$,
∴AM=$\frac{4\sqrt{3}}{3}$$sin(\frac{2π}{3}-θ)$=$\frac{4\sqrt{3}}{3}$$sin(\frac{π}{3}+θ)$.
(II)在△AMP中,由余弦定理可得:
AP2=AM2+22-4AMcos∠AMP=$\frac{16}{3}si{n}^{2}(\frac{π}{3}+θ)$+4-$\frac{16}{3}sin(\frac{π}{3}+θ)$$cos(\frac{π}{3}+θ)$
=$\frac{8}{3}(1-cos(2θ+\frac{2π}{3}))$+4-$\frac{8\sqrt{3}}{3}$$sin(2θ+\frac{2π}{3})$
=$-\frac{8}{3}$$[\sqrt{3}sin(2θ+\frac{2π}{3})+cos(2θ+\frac{2π}{3})]$+$\frac{20}{3}$
=$\frac{20}{3}$-$\frac{16}{3}$$sin(2θ+\frac{5π}{6})$,θ∈$(0,\frac{2π}{3})$.
当且仅当$2θ+\frac{5π}{6}$=$\frac{3π}{2}$,即θ=$\frac{π}{3}$时,|AP|max=2$\sqrt{3}$.

点评 本题考查了正弦定理余弦定理、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网