ÌâÄ¿ÄÚÈÝ
6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®£¨1£©Ð´³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÇóÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±ê£®
·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýtÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯Îª¦Ñ2=2¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£®
£¨2£©ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£¬ÓëÖ±ÏßÁªÁ¢·½³Ì×飬ÓÉ´ËÄÜÇó³öÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±ê£®
½â´ð ½â£º£¨1£©ÒòΪֱÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$£¬
¡à$t=y+\sqrt{3}$£¬´úÈë$x=\frac{{\sqrt{3}}}{3}t$£¬
¡à$3x-\sqrt{3}y=3$£¬¼´$\sqrt{3}x-y-\sqrt{3}=0$£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪ$\sqrt{3}x-y-\sqrt{3}=0$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¡à¦Ñ2=2¦Ñcos¦È£¬
¡àÇúÏßCµÄÆÕͨ·½³Ìx2+y2=2x£¬¼´x2-2x+y2=0£®
£¨2£©ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£¬
¡à$\left\{\begin{array}{l}\sqrt{3}x-y-\sqrt{3}=0\\{£¨{x-1}£©^2}+{y^2}=1\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}x=\frac{3}{2}\\ y=\frac{{\sqrt{3}}}{2}\end{array}\right.$»ò$\left\{\begin{array}{l}x=\frac{1}{2}\\ y=-\frac{{\sqrt{3}}}{2}\end{array}\right.$£¬
¡àÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±êΪ$£¨{\frac{3}{2}£¬\frac{{\sqrt{3}}}{2}}£©£¬£¨{\frac{1}{2}£¬-\frac{{\sqrt{3}}}{2}}£©$£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì¡¢ÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÇúÏߵĽ»µãµÄÖ±½Ç×ø±êµÄÇ󷨣¬Éæ¼°µ½¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | $x+2y+\sqrt{5}=0$»ò$x+2y-\sqrt{5}=0$ | B£® | $x-2y+\sqrt{5}=0$»ò$x-2y-\sqrt{5}=0$ | ||
| C£® | x+2y+5=0»òx+2y-5=0 | D£® | x-2y+5=0»òx-2y-5=0 |
| A£® | -i | B£® | i | C£® | 4-3i | D£® | 4+3i |