ÌâÄ¿ÄÚÈÝ
13£®£¨1£©¹À¼Æ²úÆ·ÖиÃÎïÖʺ¬Á¿µÄÖÐλÊý¼°Æ½¾ùÊý£¨Í¬Ò»×éÊý¾ÝÓøÃÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨2£©¹æ¶¨²úÆ·µÄ¼¶±ðÈç±í£º
| ²úÆ·¼¶±ð | C | B | A |
| ijÖÖÎïÖʺ¬Á¿·¶Î§ | [60£¬70£© | [70£¬80£© | [80£¬90£© |
·ÖÎö £¨1£©ÀûÓÃÖÐλÊýµÄÁ½±ßƵÂÊÏàµÈ£¬Áгö·½³ÌÇó³öÖÐλÊýµÄÖµ£¬
ÀûÓÃÆ½¾ùÊýµÈÓÚÿһ×éµ×±ßÖеãµÄ×ø±ê¡Á¶ÔÓ¦µÄƵÂÊ£¬ÔÙÇóºÍµÄÖµ£»
£¨2£©°´·Ö²ã³éÑù·¨£¬Çó³ö´ÓA¡¢B¡¢C¼¶Æ·ÖгéÈ¡µÄ²úÆ·Êý£¬¹À¼ÆÉú²ú1¼þ²úÆ·µÄƽ¾ùÀûÈó¼´¿É£®
½â´ð ½â£º£¨1£©ÉèÖÐλÊýΪx0£¬Ôò80¡Üx0£¼90£¬
ËùÒÔ10¡Á0.01+10¡Á0.02+£¨x0-80£©¡Á0.04=0.5£¬
½âµÃx0=85£¬¼´ÖÐλÊýÊÇ85£»
ÓÖÆ½¾ùÊýΪ$\overline{x}$=65¡Á0.1+75¡Á0.2+85¡Á0.4+95¡Á0.3=84£»
£¨2£©°´·Ö²ã³éÑùµÄ·½·¨£¬´ÓA¼¶Æ·ÖгéÈ¡n1=10¡Á0.7=7£¨¼þ£©£¬
´ÓB¼¶Æ·ÖгéÈ¡n2=10¡Á0.2=2£¨¼þ£©£¬
´ÓC¼¶Æ·ÖгéÈ¡n3=10¡Á0.1=1£¨¼þ£©£¬
ËùÒÔËù³éÈ¡³öµÄA¼¶Æ·Îª7¼þ£¬B¼¶Æ·Îª2¼þ£¬C¼¶Æ·Îª1¼þ£¬
ËùÒÔ¹À¼ÆÉú²ú1¼þ¸Ã²úÆ·µÄƽ¾ùÀûÈóΪ£º
$\frac{1}{10}$¡Á[7¡Á100+2¡Á50+1¡Á£¨-50£©]=75£¨Ôª£©£®
µãÆÀ ±¾Ì⿼²éÁËÀûÓÃÆµÂÊ·Ö²¼Ö±·½Í¼ÇóÖÐλÊý¡¢Æ½¾ùÊýÓë¸ÅÂʵÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®
Èôm=6£¬n=4£¬°´ÕÕÈçͼËùʾµÄ³ÌÐò¿òͼÔËÐкó£¬Êä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{100}$ | B£® | 100 | C£® | 10 | D£® | 1 |
18£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y¡Ý0\\ ax+y-3¡Ü0\\ y¡Ý0\end{array}\right.$£¬£¨ÆäÖÐa£¾0£©£¬Èôz=x+yµÄ×î´óֵΪ1£¬Ôòa=£¨¡¡¡¡£©
| A£® | l.. | B£® | 3 | C£® | 4 | D£® | 5 |
5£®º¯Êý$y=\frac{{\sqrt{1-{x^2}}}}{{2{x^2}-3x-2}}$µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬1] | B£® | [-1£¬1] | C£® | [1£¬2£©¡È£¨2£¬+¡Þ£© | D£® | $[{-1£¬-\frac{1}{2}}£©¡È£¨{-\frac{1}{2}£¬1}]$ |