题目内容
已知数列{an}的前n项和为Sn,且Sn=
an+n-3.
(1)求证:数列{an-1}是等比数列,并求数列{an}的通项公式an;
(2)令cn=n+log
(a1-1)+log
(a2-1)+…+log
(an-1),若不等式
+
+…+
≥
对任意n∈N*都成立,求实数m的最大值.
| 3 |
| 2 |
(1)求证:数列{an-1}是等比数列,并求数列{an}的通项公式an;
(2)令cn=n+log
| 3 |
| 3 |
| 3 |
| 1 |
| c1 |
| 1 |
| c2 |
| 1 |
| cn |
| log2m |
| 12 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出a1=4,an=Sn-Sn-1=
an-
an-1+1,由此能证明数列{an-1}是以a1-1=3为首项,公比为3的等比数列,从而能求出an=3n+1.
(2)由cn=n+log
(a1-1)+log
(a2-1)+…+log
(an-1)=n(n+2),从而
=
=
(
-
),由此利用裂项求和法结合已知条件能求出m的最大值.
| 3 |
| 2 |
| 3 |
| 2 |
(2)由cn=n+log
| 3 |
| 3 |
| 3 |
| 1 |
| cn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
(1)证明:当n=1时,S1=a1=
a1+1-3,解得a1=4,
当n≥2时,由Sn=
an+n-3,得Sn-1=
an-1+n-4.
两式相减,得an=Sn-Sn-1=
an-
an-1+1,
即an=3an-1-2,则an-1=3(an-1-1),
故数列{an-1}是以a1-1=3为首项,公比为3的等比数列.
∴an-1=3n,
∴an=3n+1.
(2)解:cn=n+log
(a1-1)+log
(a2-1)+…+log
(an-1)
=n+2+4+…+2n
=n+n(n+1)
=n(n+2),
∴
=
=
(
-
),
∴不等式
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)
=
-
,
∵不等式
+
+…+
≥
对任意n∈N*都成立,
∴
-
≥
,
∴log2m≤9-
<9,
∴m<29=512,
∵m∈N*,∴m的最大值为511.
| 3 |
| 2 |
当n≥2时,由Sn=
| 3 |
| 2 |
| 3 |
| 2 |
两式相减,得an=Sn-Sn-1=
| 3 |
| 2 |
| 3 |
| 2 |
即an=3an-1-2,则an-1=3(an-1-1),
故数列{an-1}是以a1-1=3为首项,公比为3的等比数列.
∴an-1=3n,
∴an=3n+1.
(2)解:cn=n+log
| 3 |
| 3 |
| 3 |
=n+2+4+…+2n
=n+n(n+1)
=n(n+2),
∴
| 1 |
| cn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴不等式
| 1 |
| c1 |
| 1 |
| c2 |
| 1 |
| cn |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
∵不等式
| 1 |
| c1 |
| 1 |
| c2 |
| 1 |
| cn |
| log2m |
| 12 |
∴
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
| log2m |
| 12 |
∴log2m≤9-
| 12n+18 |
| (n+1)(n+2) |
∴m<29=512,
∵m∈N*,∴m的最大值为511.
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查实数的最大值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行,则( )
| A、a=1或a=2 |
| B、a=1或a=-2 |
| C、a=1 |
| D、a=-2 |