题目内容
(cos
+sin
)•(cos3
-sin3
)的值为 .
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
考点:三角函数的化简求值
专题:三角函数的求值
分析:通过分解因式,利用二倍角的余弦函数化简求值即可.
解答:
解:(cos
+sin
)•(cos3
-sin3
)=(cos
+sin
)(cos
-sin
)•(cos2
+sin2
+cos
sin
)=cos
(1+
sin
)=
(1+
)=
.
故答案为:
.
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| ||
| 2 |
| ||
| 4 |
1+2
| ||
| 4 |
故答案为:
1+2
| ||
| 4 |
点评:本题考查三角函数的化简求值二倍角的余弦函数的应用,基本知识的考查.
练习册系列答案
相关题目