题目内容

9.在等差数列{an}中,a2=3,a3+a6=11
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+$\frac{1}{{2}^{{a}_{n}}}$,其中n∈N*,求数列{bn}的前n项和Sn

分析 (Ⅰ)设等差数列{an}的公差为d,由a2=3,a3+a6=11,可得a1+d=3,2a1+7d=11,联立解出即可得出.
(Ⅱ)bn=an+$\frac{1}{{2}^{{a}_{n}}}$=n+1+$\frac{1}{{2}^{n+1}}$,利用等差数列与等比数列的求和公式即可得出.

解答 解:(Ⅰ)设等差数列{an}的公差为d,∵a2=3,a3+a6=11,
∴a1+d=3,2a1+7d=11,解得a1=2,d=1.
所以数列{an}的通项公式为an=2+(n-1)=n+1.
(Ⅱ)bn=an+$\frac{1}{{2}^{{a}_{n}}}$=n+1+$\frac{1}{{2}^{n+1}}$,
∴Sn=[2+3+…+(n+1)]+$(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n+1}})$
=$\frac{n(n+3)}{2}$+$\frac{\frac{1}{4}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$
=$\frac{{n}^{2}+3n+1}{2}$-$\frac{1}{{2}^{n+1}}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网