题目内容
已知函数f(x)是R上的偶函数,若对于x≥0都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(-2013)+f(2014)=( )
| A、0 | ||
B、
| ||
| C、1 | ||
| D、2 |
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据题意可得;周期为4,可得f(-2013)+f(2014)=f(1)-f(0),即可求解.
解答:
解:∵数f(x)是R上的偶函数,
∴f(-x)=f(x),
∵对于x≥0都有f(x+2)=-f(x),
∴f(x+4)=f(x),
∴周期为4,
∵当x∈[0,2)时,f(x)=log8(x+1),
∴f(-2013)+f(2014)=f(1)-f(0)=
,
故答案为:B
∴f(-x)=f(x),
∵对于x≥0都有f(x+2)=-f(x),
∴f(x+4)=f(x),
∴周期为4,
∵当x∈[0,2)时,f(x)=log8(x+1),
∴f(-2013)+f(2014)=f(1)-f(0)=
| 1 |
| 3 |
故答案为:B
点评:本题考查了抽象函数的性质,对数的运算,属于中档题.
练习册系列答案
相关题目
已知x1、x2是函数f(x)=
x2+
ax2+2bx(a,b∈R)的两个极值点,且x1∈(0,1),x2∈(1,2),则4a+3b的取值范围是( )
| 1 |
| 3 |
| 1 |
| 2 |
| A、(-9,-4) |
| B、(-8,-4) |
| C、(-9,-8) |
| D、(-15,-4) |