题目内容
若数列{an}的前n项和为Sn,对任意正整数n都有6Sn=1-2an,记bn=log
an
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)设Tn=
+
+…+
,求证:Tn<
.
| 1 |
| 2 |
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)设Tn=
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 5 |
| 18 |
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)n=1时,6a1=1-2a1,6(a1+a2)=1-2a2,由此能求出a1,a2的值.
(Ⅱ)由6Sn=1-2an对于任意的正整数都成立,得数列{an}是等比数列,a1=
,公比q=
,从而能求出bn=2n+1.
(Ⅲ):Tn=
+
[(
-
)+(
-
)+…+(
-
)],由此能证明Tn<
.
(Ⅱ)由6Sn=1-2an对于任意的正整数都成立,得数列{an}是等比数列,a1=
| 1 |
| 8 |
| 1 |
| 4 |
(Ⅲ):Tn=
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 5 |
| 18 |
解答:
(Ⅰ)解:n=1时,6a1=1-2a1,得a1=
,
又6(a1+a2)=1-2a2,得a2=
.
(Ⅱ)解:∵6Sn=1-2an对于任意的正整数都成立,
∴6Sn-1=1-2an-1,(n≥2),
两式相减,得6an=2an-1-2an,即an=
an-1,n≥2,
∴数列{an}是等比数列.
由(Ⅰ)得a1=
,公比q=
,
∴an=
×(
)n-1=(
)2n+1,
∴bn=2n+1.
(Ⅲ)证明:Tn=
+
+…+
=
+
+…+
=
+
[(
-
)+(
-
)+…+(
-
)]
=
+
(
-
)
=
-
<
.
∴Tn<
.
| 1 |
| 8 |
又6(a1+a2)=1-2a2,得a2=
| 1 |
| 32 |
(Ⅱ)解:∵6Sn=1-2an对于任意的正整数都成立,
∴6Sn-1=1-2an-1,(n≥2),
两式相减,得6an=2an-1-2an,即an=
| 1 |
| 4 |
∴数列{an}是等比数列.
由(Ⅰ)得a1=
| 1 |
| 8 |
| 1 |
| 4 |
∴an=
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 2 |
∴bn=2n+1.
(Ⅲ)证明:Tn=
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 32 |
| 1 |
| 52 |
| 1 |
| (2+1)2 |
=
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+1 |
=
| 5 |
| 18 |
| 1 |
| 2(2n+1) |
| 5 |
| 18 |
∴Tn<
| 5 |
| 18 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
设(1+x)10=a0+a1x+a2x2+…+ax1010,则a1+2a2+3a3+…+10a10=( )
| A、9×29 |
| B、10×210 |
| C、10×29 |
| D、9×210 |
一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为( )
| A、9 | ||
| B、11 | ||
| C、10 | ||
D、
|