题目内容

已知函数f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a为实常数).若f(x)在[2,+∞)上是单调函数,则a的取值范围是(  )
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:求出函数的导数,通过a与0的大小比较,判断导函数的符号,研究函数的单调性,求出a 的范围.
解答: 解:f′(x)=
1
x
-
1
x2
+a=
ax2+x-1
x2

当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f′(x)>0,符合要求.
当a<0时,令g(x)=ax2+x-1,g(x)在[2,+∞)上只能恒小于零,
故△=1+4a≤0或
△=1+4a>0
g(2)≤0
-
1
2a
≤2
解得a≤-
1
4

∴a的取值范围是(-∞,-
1
4
]∪[0,+∞).
故选:B.
点评:本题考查函数的导数应用,函数的单调性以及分类讨论思想的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网