题目内容
19.函数f(x)=xex在(1,f(1))处的切线方程是y=2ex-e.分析 求得切点坐标和函数的导数,可得切线的斜率,运用点斜式方程可得切线的方程.
解答 解:由题意可得f(1)=e,
f'(x)=ex(x+1),可得切线的斜率f'(1)=2e,
所以切线方程y-e=2e(x-1),即y=2ex-e.
故答案为:y=2ex-e.
点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.
练习册系列答案
相关题目
10.函数f(x)是定义在(0,+∞)上的单调函数,?x∈(0,+∞),f[f(x)-lnx]=e+1,函数h(x)=xf(x)-ex的最小值为( )
| A. | -1 | B. | $-\frac{1}{e}$ | C. | 0 | D. | e |
7.近年来我国电子商务行业发展迅速,相关管理部门推出了针对电商的商品质量和服务评价的评价体系,现从评价系统中选出某商家的200次成功交易,发现对商品质量的好评率为0.6,对服务评价的好评率为0.75,其中对商品质量和服务评价都做出好评的交易80次.
(1)是否可以在犯错误概率不超过0.5%的前提下,认为商品质量与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品质量和服务评价全好评的次数为随机变量X,求X的分布列(可用组合数公式表示)和数学期望.
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(1)是否可以在犯错误概率不超过0.5%的前提下,认为商品质量与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品质量和服务评价全好评的次数为随机变量X,求X的分布列(可用组合数公式表示)和数学期望.
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
11.函数f(x)=sinx-cosx的图象( )
| A. | 关于直线$x=\frac{π}{4}$对称 | B. | 关于直线$x=-\frac{π}{4}$对称 | ||
| C. | 关于直线$x=\frac{π}{2}$对称 | D. | 关于直线$x=-\frac{π}{2}$对称 |