题目内容

8.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20].

分析 设矩形的另一边长为ym,由相似三角形的性质可得:$\frac{x}{30}$=$\frac{30-y}{30}$,(0<x<30).矩形的面积S=x(30-x),利用S≥200解出即可.

解答 解:设矩形的另一边长为ym,
由相似三角形的性质可得:$\frac{x}{30}$=$\frac{30-y}{30}$,
解得y=30-x,(0<x<30)
∴矩形的面积S=x(30-x),
∵矩形花园的面积不小于200m2
∴x(30-x)≥200,
化为(x-10)(x-20)≤0,解得10≤x≤20.
满足0<x<30.
故其边长x(单位m)的取值范围是[10,20].
故答案为:[10,20].

点评 本题考查了相似三角形的性质、三角形的面积计算公式、一元二次不等式的解法等基础知识与基本技能方法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网