题目内容
5.已知函数f(x)=x2+ax+3(1)当x∈R时,f(x)≥2恒成立,求a的取值范围;
(2)当x∈R时,g(x)=f(2x).
①求g(x)的值域;
②若g(x)≤a有解,求a的取值范围.
分析 (1)f(x)≥2恒成立 即 x2+ax+1≥0恒成立,即△=a2-4≤0,解得a的取值范围;
(2)①令2x=t∈(0,+∞)得$y=g(x)={t^2}+at+3={(t+\frac{a}{2})^2}-\frac{a^2}{4}+3$,进而得到g(x)的值域;
②若g(x)≤a有解,即g(x)min≤a,进而得到a的取值范围.
解答 (本题满分12分)
解:(1)f(x)≥2恒成立 即 x2+ax+1≥0恒成立,
得△=a2-4≤0于是-2≤a≤2…(4分)
(2)①令2x=t∈(0,+∞)
得$y=g(x)={t^2}+at+3={(t+\frac{a}{2})^2}-\frac{a^2}{4}+3$
关于t的二次函数图象为抛物线,开口向上,图象过点(0,3),对称轴$t=-\frac{a}{2}$…(5分)
当$-\frac{a}{2}≤0即a≥0$g(x)>3
当$-\frac{a}{2}>0即a<0$$g{(x)_{min}}=3-\frac{a^2}{4}$
于是 当a≥0时,g(x)∈(3,+∞)
当a<0时,$g(x)∈[3-\frac{a^2}{4},+∞)$…(8分)
②g(x)≤a有解,即g(x)min≤a…(9分)
由①$\left\{\begin{array}{l}a≥0\\ 3<a\end{array}\right.⇒a>3$
或$\left\{\begin{array}{l}a<0\\ 3-\frac{a^2}{4}≤a\end{array}\right.⇒\left\{\begin{array}{l}a<0\\{a^2}+4a-12≥0\end{array}\right.⇒a≤-6$
综上得a∈(-∞,-6]∪(3,+∞)为所求…(12分)
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
| 日最高气温t(单位:℃) | t≤22℃ | 22℃<t≤28℃ | 28℃<t≤32℃ | t>32℃ |
| 天数 | 6 | 12 | X | Y |
(Ⅰ)求X,Y的值;
(Ⅱ)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关?说明理由.
| 高温天气 | 非高温天气 | 合计 | |
| 旺销 | 2 | 22 | 24 |
| 不旺销 | 4 | 2 | 6 |
| 合计 | 6 | 24 | 30 |
| P(K2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | ?x≤0,x2-x>0 | B. | ?x>0,x2-x≤0 | C. | ?x≤0,x2-x>0 | D. | ?x>0,x2-x<0 |