题目内容
11.双曲线$C:{x^2}-\frac{y^2}{3}=1$的渐近线方程为y=$±\sqrt{3}x$;若双曲线C的右焦点恰是抛物线N:y2=2px(p>0)的焦点,则抛物线N的准线方程为x=-2.分析 双曲线双曲线方程真假jjx渐近线方程,求出双曲线的焦点坐标然后求解P,求解抛物线的准线方程即可.
解答 解:双曲线$C:{x^2}-\frac{y^2}{3}=1$的渐近线方程为:y=$±\sqrt{3}x$;
双曲线的右焦点坐标:(2,0),
则抛物线N:y2=2px(p>0)的焦点(2,0),可得p=4,抛物线的准线方程为:x=-2.
故答案为:$y=±\sqrt{3}x$;x=-2
点评 本题考查抛物线以及双曲线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
1.若直线l的方向向量为$\overrightarrow{a}=(1,0,2)$,平面α的法向量为$\overrightarrow{n}$=(-2,0,-4),则( )
| A. | l∥α | B. | l⊥α | C. | l?α | D. | l与α斜交 |
2.函数$y=sin2x-\sqrt{3}cos2x$的单调递减区间是( )
| A. | $[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}](k∈Z)$ | B. | $[{2kπ+\frac{5π}{12},2kπ+\frac{11π}{12}}](k∈Z)$ | ||
| C. | $[{kπ+\frac{5π}{12},kπ+\frac{11π}{12}}](k∈Z)$ | D. | $[{2kπ+\frac{π}{6},2kπ+\frac{2π}{3}}](k∈Z)$ |
16.已知F1(-c,0),F2(c,0)分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,\;b>0})$的左、右焦点,P为双曲线上的一点且满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-\frac{1}{2}{c^2}$,则此双曲线的离心率的取值范围是( )
| A. | [2,+∞) | B. | $[{\sqrt{3}\;,\;+∞})$ | C. | $[{\sqrt{2}\;,\;+∞})$ | D. | $[{\frac{{\sqrt{5}+1}}{2}\;,\;+∞})$ |
9.设f(x)是R上的偶函数,并且在(-∞,0)上是增函数,已知x1<0,x2>0,且|x1|<|x2|,则( )
| A. | f(-x1)>f(-x2) | B. | f(-x1)<f(-x2) | ||
| C. | f(-x1)=f(-x2) | D. | f(-x1)与f(-x2)的大小不定 |
10.有一段演绎推理是这样的:“若直线平行于平面,则直线平行于平面内所有直线;已知直线b?平面α,直线a⊆平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为( )
| A. | 大前提错误 | B. | 小前提错误 | C. | 推理形式错误 | D. | 非以上错误 |