题目内容
求证:CD为圆O的切线.
考点:圆的切线的判定定理的证明
专题:选作题,立体几何
分析:首先连接OD,由弦AD∥OC,易证得∠COB=∠COD,继而证得△COB≌△COD(SAS),即可得∠ODC=∠OBC,然后由BC与⊙O相切于点B,可得∠ODC=90°,即可证得CD是⊙O的切线.
解答:
证明:连接OD,
∵AD∥OC,
∴∠A=∠COB,∠ADO=∠COD,
∵OA=OD,
∴∠A=∠ADO,
∴∠COB=∠COD,
在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,
∴△COB≌△COD(SAS),
∴∠ODC=∠OBC,
∵BC与⊙O相切于点B,
∴OB⊥BC,
∴∠OBC=90°,
∴∠ODC=90°,
即OD⊥CD,
∴CD是⊙O的切线.
∵AD∥OC,
∴∠A=∠COB,∠ADO=∠COD,
∵OA=OD,
∴∠A=∠ADO,
∴∠COB=∠COD,
在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,
∴△COB≌△COD(SAS),
∴∠ODC=∠OBC,
∵BC与⊙O相切于点B,
∴OB⊥BC,
∴∠OBC=90°,
∴∠ODC=90°,
即OD⊥CD,
∴CD是⊙O的切线.
点评:此题考查了切线的判定与性质、全等三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
在△ABC中,内角A,B,C的对边分别是a,b,c,若2sinA=sinC,a2,c2,b2成等差数列,则B=( )
| A、30° | B、60° |
| C、120° | D、150° |