题目内容

3.已知等差数列{an}的前n项和为Sn,a2=0,S5=2a4-1.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

分析 (1)设出公差,利用求解求解首项与公差,即可得到结果.
(2)利用数列求和公式求解即可.

解答 解:(1)设公差为d,a2=0,可得a1+d=0,S5=2a4-1,可得5a1+10d=2a1+6d-1,
解得d=-1,a1=1,所以an=2-n.(6分)
(2)由(1)知,bn=2${\;}^{{a}_{n}}$=22-n
所以Tn=$\frac{2[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$=4-22-n.(12分)

点评 本题考查数列通项公式及其前n项和公式的求法,其中涉及数列求和问题中的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网