题目内容

18.在空间中,已知$\overrightarrow{AB}$=(2,4,0),$\overrightarrow{DC}$=(-1,3,0),则异面直线AB与DC所成角θ的大小为(  )
A.45°B.90°C.120°D.135°

分析 根据条件便可求出$|\overrightarrow{AB}|,|\overrightarrow{DC}|$,以及$\overrightarrow{AB}•\overrightarrow{DC}$的值,从而可求出$cos<\overrightarrow{AB},\overrightarrow{DC}>$的值,进而得出异面直线AB与DC所成角θ的大小.

解答 解:$|\overrightarrow{AB}|=\sqrt{20}=2\sqrt{5}$,$|\overrightarrow{DC}|=\sqrt{10}$,$\overrightarrow{AB}•\overrightarrow{DC}=10$;
∴$cos<\overrightarrow{AB},\overrightarrow{DC}>=\frac{10}{2\sqrt{5}×\sqrt{10}}=\frac{\sqrt{2}}{2}$;
∴$<\overrightarrow{AB},\overrightarrow{DC}>=45°$;
∴异面直线AB与DC所成角θ的大小为45°.
故选A.

点评 考查根据向量坐标求向量长度的公式,向量数量积的坐标运算,以及向量夹角余弦的坐标公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网