题目内容

已知点A(3,2),点P是抛物线y2=4x上的一个动点,求|PA|+|PF|的最小值及此时P点的坐标.
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:作PH垂直于准线,H为垂足,由抛物线的定义知,|PF|=|PH|,|PA|+|PF|=|PH|+|PA|,故当P、A、H三点共线时,|PH|+|PA|取得最小值,即|AH|.
解答: 解:记抛物线y2=4x的焦点为F(1,0),准线l是x=-1,
作PH垂直于准线,H为垂足,
由抛物线的定义知,|PF|=|PH|,|PA|+|PF|=|PH|+|PA|,
故当P、A、H三点共线时,|PH|+|PA|取得最小值为
|AH|=3-(-1)=4,
此时P(1,2).
点评:本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网