题目内容
13.已知数列{an}的前n项和为Sn,a1=8,an=3Sn-1+8(n≥2)(1)记bn=log2an,求数列{bn}的通项公式;
(2)在(1)成立的条件下,设${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn.
分析 (1)根据数列的递推公式和对数的运算性质即可求出数列{bn}的通项公式,
(2)利用裂项求和即可求出数列{cn}的前n项和Tn.
解答 解:(1)a1=8,an=3Sn-1+8(n≥2),
∴an-1=3Sn-2+8,
∴an-an-1=3Sn-1+8-3Sn-2-8=3an-1,
∴an=4an-1,
∴{an}是以4为公比的等比数列,
∵a1=8,
∴an=8•4n-1=2•4n=22n+1,
∴bn=log2an=2n+1,
(2)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
∴Tn=$\frac{1}{2}$[($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n+1}$-$\frac{1}{2n+3}$)]=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{2n+3}$)=$\frac{n}{6n+9}$.
点评 本题考查了数列的递推公式和裂项求和,属于中档题.
练习册系列答案
相关题目
8.已知F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0,a≠b)$的左右焦点,P为双曲线右支上异于顶点的任一点,O为坐标原点,则下列说法正确的是( )
| A. | △PF1F2的内切圆圆心在直线$x=\frac{a}{2}$上 | B. | △PF1F2的内切圆圆心在直线x=b上 | ||
| C. | △PF1F2的内切圆圆心在直线OP上 | D. | △PF1F2的内切圆经过点(a,0) |
11.点A(sin2017°,cos2017°)在直角坐标平面上位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
9.已知集合P={x|1<3x≤9},Q={1,2,3},则P∩Q=( )
| A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |