题目内容
8.已知F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0,a≠b)$的左右焦点,P为双曲线右支上异于顶点的任一点,O为坐标原点,则下列说法正确的是( )| A. | △PF1F2的内切圆圆心在直线$x=\frac{a}{2}$上 | B. | △PF1F2的内切圆圆心在直线x=b上 | ||
| C. | △PF1F2的内切圆圆心在直线OP上 | D. | △PF1F2的内切圆经过点(a,0) |
分析 设△PF1F2的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则可知|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,点P在双曲线右支上,根据双曲线的定义可得|PF1|-|PF2|=2a,因此|F1M|-|F2M|=2a,设M点坐标为(x,0),代入即可求得x,可得结论.
解答 解:设△PF1F2的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,
则|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,
又点P在双曲线右支上,
所以|PF1|-|PF2|=2a,故|F1M|-|F2M|=2a,而|F1M|+|F2M|=2c,
设M点坐标为(x,0),
则由|F1M|-|F2M|=2a可得(x+c)-(c-x)=2a
解得x=a,显然内切圆的圆心与点M的连线垂直于x轴,
故选D.
点评 本题主要考查了双曲线的简单性质.特别是灵活利用了双曲线的定义.
练习册系列答案
相关题目
18.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆上存在点P使得$\overrightarrow{PA}•\overrightarrow{PB}=0$,则m的取值范围是( )
| A. | (-∞,4] | B. | (6,+∞) | C. | (4,6) | D. | [4,6] |
3.数列{an}的前n项和${S_n}=A{n^2}+Bn+q(A≠0)$,则q=0是{an}为等差数列的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
3.某同学用“五点法”画函数f(x)=Asin(ωx+φ)$(ω>0,|φ|<\frac{π}{2})$在某一个周期内的图象时,列表并填入了部分数据,如表:
(1)请将如表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.
(3)求当$x∈[-\frac{π}{4},\frac{π}{4}]$时,函数y=g(x)的值域.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | |
| f(x)=Asin(ωx+φ) | 0 | 5 | 0 | -5 | 0 |
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.
(3)求当$x∈[-\frac{π}{4},\frac{π}{4}]$时,函数y=g(x)的值域.
4.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点.若$\overrightarrow{AC}•\overrightarrow{BE}$=3,则AB的长为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |