题目内容
已知a,b为两个不相等的实数,集合M={a2-4a,-1},N={b2-4b+1,-2},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b等于 .
考点:映射
专题:函数的性质及应用,集合
分析:由已知可得:集合M={a2-4a,-1},N={b2-4b+1,-2},即a2-4a=-2,且b2-4b+1=-1,即a,b是方程x2-4x+2=0的两个根,进而根据韦达定理得到答案.
解答:
解:∵f:x→x表示把M中的元素x映射到集合N中仍为x,
∴M=N,
又∵集合M={a2-4a,-1},N={b2-4b+1,-2},
∴a2-4a=-2,且b2-4b+1=-1,
即a,b是方程x2-4x+2=0的两个根,
故a+b=4,
故答案为:4
∴M=N,
又∵集合M={a2-4a,-1},N={b2-4b+1,-2},
∴a2-4a=-2,且b2-4b+1=-1,
即a,b是方程x2-4x+2=0的两个根,
故a+b=4,
故答案为:4
点评:本题考查的知识点是映射,集合相等,其中根据已知分析出集合M=N是解答的关键.
练习册系列答案
相关题目
定义在R上的函数f(x)满足:对任意的x1,x2∈R(x1≠x2),有
<0恒成立,若a=f(e -
),b=f(lnπ),c=f(log5
),则( )
| f(x1)-f(x2) |
| x1-x2 |
| 1 |
| 2 |
| 1 |
| 2 |
| A、b<a<c |
| B、a<b<c |
| C、c<a<b |
| D、c<b<a |