题目内容

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,若f[f(m)]<0,则实数m的取值范围为(  )
A.$({-3,-1}]∪({-\frac{1}{2},1}]∪({2,+∞})$B.$({-∞,-2}]∪({-1,-\frac{1}{2}}]∪({1,{{log}_2}3})$
C.$({-∞,-1}]∪({0,\frac{1}{2}}]∪({1,+∞})$D.(-∞,-3]∪(-1,0]∪(1,log23)

分析 由已知中函数$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,若f[f(m)]<0,则f(m)∈[0,1)∪(-∞,-2),进而得到实数m的取值范围.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,
若f[f(m)]<0,则f(m)∈[0,1)∪(-∞,-2),
当m≥0时,由2m-2∈[0,1)得:m∈(1,log23),
当m<0时,由${log}_{\frac{1}{2}}(-m)$∈[0,1)∪(-∞,-2)得:$(-∞,-2]∪(-1,-\frac{1}{2}]$
故m∈$(-∞,-2]∪(-1,-\frac{1}{2}]∪(1,{log}_{2}3)$,
故:B

点评 本题考查的知识点是分段函数的应用,指数函数的图象和性质,对数函数的图象和性质,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网