题目内容
6.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,若f[f(m)]<0,则实数m的取值范围为( )| A. | $({-3,-1}]∪({-\frac{1}{2},1}]∪({2,+∞})$ | B. | $({-∞,-2}]∪({-1,-\frac{1}{2}}]∪({1,{{log}_2}3})$ | ||
| C. | $({-∞,-1}]∪({0,\frac{1}{2}}]∪({1,+∞})$ | D. | (-∞,-3]∪(-1,0]∪(1,log23) |
分析 由已知中函数$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,若f[f(m)]<0,则f(m)∈[0,1)∪(-∞,-2),进而得到实数m的取值范围.
解答 解:∵函数$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,
若f[f(m)]<0,则f(m)∈[0,1)∪(-∞,-2),
当m≥0时,由2m-2∈[0,1)得:m∈(1,log23),
当m<0时,由${log}_{\frac{1}{2}}(-m)$∈[0,1)∪(-∞,-2)得:$(-∞,-2]∪(-1,-\frac{1}{2}]$
故m∈$(-∞,-2]∪(-1,-\frac{1}{2}]∪(1,{log}_{2}3)$,
故:B
点评 本题考查的知识点是分段函数的应用,指数函数的图象和性质,对数函数的图象和性质,难度中档.
练习册系列答案
相关题目
16.已知命题$p:sinx=\frac{1}{2}$,命题$q:x=\frac{π}{6}+2kπ,k∈Z$,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
1.函数$y=\frac{e^x}{x}$的单调减区间是( )
| A. | (-∞,1] | B. | (1,+∞] | C. | (0,1] | D. | (-∞,0)和(0,1] |