题目内容
18.在平面直角坐标系中,曲线$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.(α$是参数)与曲线$\left\{\begin{array}{l}{x=tcos\frac{π}{3}}\\{y=tsin\frac{π}{3}}\end{array}\right.$(t是参数)的交点的直角坐标为$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})({-\frac{1}{2},-\frac{{\sqrt{3}}}{2}})$.分析 化参数方程为普通方程,联立即可得出结论.
解答 解:曲线$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.(α$是参数),即x2+y2=1,曲线$\left\{\begin{array}{l}{x=tcos\frac{π}{3}}\\{y=tsin\frac{π}{3}}\end{array}\right.$(t是参数),即y=$\sqrt{3}$x,
联立可得4x2=1,∴x=$±\frac{1}{2}$,y=$±\frac{\sqrt{3}}{2}$,
∴曲线$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.(α$是参数)与曲线$\left\{\begin{array}{l}{x=tcos\frac{π}{3}}\\{y=tsin\frac{π}{3}}\end{array}\right.$(t是参数)的交点的直角坐标为
故答案为$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})({-\frac{1}{2},-\frac{{\sqrt{3}}}{2}})$
点评 本题考查了参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-2,x≥0\\{log_{\frac{1}{2}}}({-x}),x<0\end{array}\right.$,若f[f(m)]<0,则实数m的取值范围为( )
| A. | $({-3,-1}]∪({-\frac{1}{2},1}]∪({2,+∞})$ | B. | $({-∞,-2}]∪({-1,-\frac{1}{2}}]∪({1,{{log}_2}3})$ | ||
| C. | $({-∞,-1}]∪({0,\frac{1}{2}}]∪({1,+∞})$ | D. | (-∞,-3]∪(-1,0]∪(1,log23) |
10.已知某几何体的三视图如图表 所示,则该几何体的体积为( )

| A. | $\frac{16}{3}$ | B. | $\frac{64}{3}$ | C. | $\frac{80}{3}$ | D. | $\frac{43}{3}$ |
7.若正数a,b满足3+log2a=2+log3b=log6(a+b),则$\frac{1}{a}+\frac{1}{b}$等于( )
| A. | 18 | B. | 36 | C. | 72 | D. | 144 |