题目内容

5.函数f(x)=$\left\{\begin{array}{l}{-x-4,(x<0)}\\{{x}^{2}-4,(x>0)}\end{array}\right.$的零点为(  )
A.-4或-2B.-4或2C.-2或4D.-2或2

分析 利用分段函数,通过f(x)=0,求解即可.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-x-4,(x<0)}\\{{x}^{2}-4,(x>0)}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x<0}\\{-x-4=0}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{{x}^{2}-4=0}\end{array}\right.$解得:x=-4,或x=2
函数的零点为:-4,2;
故选:B.

点评 本题考查了分段函数的解析式的求解,函数的零点的求解,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网