题目内容

10.若存在x0>1,使不等式(x0+1)ln  x0<a(x0-1)成立,则实数a的取值范围是 (  )
A.(-∞,2)B.(2,+∞)C.(1,+∞)D.(4,+∞)

分析 若存在x0>1,使不等式(x0+1)ln x0<a(x0-1)成立,则存在x0>1,使不等式a>$\frac{({x}_{0}+1{)lnx}_{0}}{{x}_{0}-1}$成立,令f(x)=$\frac{{({x}_{\;}+1)lnx}_{\;}}{{x}_{\;}-1}$=(1+$\frac{2}{x-1}$)lnx,x>1,求出函数的极限,可得数a的取值范围.

解答 解:若存在x0>1,使不等式(x0+1)ln x0<a(x0-1)成立,
则存在x0>1,使不等式a>$\frac{({x}_{0}+1{)lnx}_{0}}{{x}_{0}-1}$成立,
令f(x)=$\frac{{({x}_{\;}+1)lnx}_{\;}}{{x}_{\;}-1}$=(1+$\frac{2}{x-1}$)lnx,x>1,
此时f(x)为增函数,
由$\lim_{x→1}f(x)$=$\lim_{x→1}lnx$+$\lim_{x→1}\frac{2lnx}{x-1}$=$\lim_{x→1}\frac{2lnx}{x-1}$→2
故a>2,
即实数a的取值范围是(2,+∞),

点评 本题考查的知识点是函数存在性问题,函数的单调性,极限运算,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网