题目内容

19.已知数列{an}为等差数列,若a2+a6+a10=$\frac{π}{2}$,则tan(a3+a9)的值为(  )
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

分析 由等差数列的性质得${a}_{6}=\frac{π}{6}$.从而a3+a9=2a6=$\frac{π}{3}$,由此能求出tan(a3+a9)的值.

解答 解:∵数列{an}为等差数列,a1+a6+a10=$\frac{π}{2}$,
∴a2+a6+a10=3a6=$\frac{π}{2}$,解得${a}_{6}=\frac{π}{6}$.
∴a3+a9=2a6=$\frac{π}{3}$,
∴tan(a3+a9)=tan$\frac{π}{3}$=$\sqrt{3}$.
故选:D.

点评 本题考查正切值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网