题目内容
13.已知圆C:(x-1)2+(y-2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为2$\sqrt{2}$.分析 得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.
解答 解:由圆C:(x-1)2+(y-2)2=2,
∴圆心坐标C(1,2),半径r=$\sqrt{2}$.
∵等边△PAB的一边AB为圆C的一条弦,
∴|PC|的最大值为直径2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.
点评 本题考查圆的方程,考查学生的计算能力,确定|PC|的最大值为直径是关键.
练习册系列答案
相关题目
3.函数f(x)=2cos(2x+θ)sinθ-sin2(x+θ)(θ为常数,且θ≠$\frac{kπ}{2}$,k∈Z)图象的一个对称中心的坐标为( )
| A. | (-$\frac{π}{4}$,0) | B. | (0,0) | C. | ($\frac{θ}{2}$,0) | D. | (θ,0) |
4.已知向量$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(x,3),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值是( )
| A. | -6 | B. | 6 | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
1.在△ABC中,D为线段BC上一点,且$BD=\frac{1}{5}BC$,以向量$\overrightarrow{AB},\overrightarrow{AC}$作为一组基底,则$\overrightarrow{AD}$等于( )
| A. | $\frac{1}{5}\overrightarrow{AB}+\frac{4}{5}\overrightarrow{AC}$ | B. | $\frac{2}{5}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{AC}$ | C. | $\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}$ | D. | $\frac{4}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$ |