题目内容

平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长度都为2,且两两夹角为60°,则DB1和C1A1所成角大小为
 
考点:异面直线及其所成的角
专题:空间角
分析:
AB
=
a
AD
=
b
AA1
=
c
,则两两夹角为60°,且模均为2.|
DB1
|
=
(
a
-
b
+
c
)2
=2
6
,|
C1A1
|=
(-
a
-
b
)2
=2
2
DB1
C1A1
=(
a
-
b
+
c
)•(
a
-
b
)=4,设DB1和C1A1所成角为θ,cosθ=|cos<
DB1
C1A1
>|=
|
DB1
C1A1
|
|
DB1
|•|
C1A1
|
,由此能求出DB1和C1A1所成角大小.
解答: 解:设
AB
=
a
AD
=
b
AA1
=
c
,则两两夹角为60°,且模均为2.
DB1
=
a
-
b
+
c
C1A1
=-
a
-
b

|
DB1
|
=
(
a
-
b
+
c
)2

=
4+4+4+2×2×2×
1
2
+2×2×2×
1
2
+2×2×2×
1
2

=2
6

|
C1A1
|=
(-
a
-
b
)2
=
a2+b2+2
a
b

=
2+2+2×2×2×
1
2
=2
2

DB1
C1A1
=(
a
-
b
+
c
)•(
a
-
b

=
a
2
+
b
2
-2
a
b
+
a
c
-
b
c

=4+4-4+2-2
=4,
设DB1和C1A1所成角为θ,
cosθ=|cos<
DB1
C1A1
>|=
|
DB1
C1A1
|
|
DB1
|•|
C1A1
|

=
4
2
6
×2
2
=
3
6

∴θ=arccos
3
6

故答案为:arccos
3
6
点评:本题考查的知识点是异面直线所成角的余弦值的计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网