题目内容
一位母亲纪录了儿子3到9岁的身高数据(略),她根据这些数据建立的身高y(cm)与年龄x的回归模型为
=7.19x+73.93,用此模型预测孩子10岁时的身高,则有( )
| y |
| A、身高一定是145.83cm |
| B、身高在145.83cm左右 |
| C、身高在145.83cm以上 |
| D、身高在145.83cm以下 |
考点:回归分析的初步应用
专题:计算题,概率与统计
分析:根据所给的高与年龄的回归模型,可以估计孩子在10岁时可能的身高,这是一个预报值,不是确定的值,在叙述时注意不要出错.
解答:
解:∵身高与年龄的回归模型为
=7.19x+73.93,
∴可以预报孩子10岁时的身高是
=7.19×10+73.93=145.83
故选:B.
| y |
∴可以预报孩子10岁时的身高是
| y |
故选:B.
点评:本题考查回归分析的初步应用,是一个基础题,这种根据回归直线方程预报出的结果,是一个估计值,不是确定的值,这是题目要考查的知识点.
练习册系列答案
相关题目
如图示,在圆O中,若弦AB=6,AC=10,则
•
的值为( )

| AO |
| BC |
| A、-16 | B、-2 | C、32 | D、16 |
下列函数中,满足“对?x1,x2∈(0,+∞),当x1<x2,都有f(x1)>f(x2)”的是( )
| A、f(x)=x2 | ||
| B、f(x)=lnx | ||
| C、f(x)=-|x+2| | ||
D、f(x)=(
|
已知点A、B、C为椭圆
+y2=1上三点,其中A(1,
),且△ABC的内切圆圆心在直线x=1上,则△ABC三边斜率和为( )
| x2 |
| 4 |
| ||
| 2 |
A、-
| ||||
B、
| ||||
C、-
| ||||
D、
|
过点P(3,-2),且垂直于直线3x+2y-8=0的直线方程为( )
| A、3x+2y-5=0 |
| B、3x+2y+5=0 |
| C、2x-3y-12=0 |
| D、2x-3y+12=0 |
圆x2+y2+4x-2y+4=0的点到直线y=x-1上的最近距离为( )
A、2
| ||
B、
| ||
C、2
| ||
| D、1 |
已知函数f(x)=
x3-x2+ax+b,其中a<0,如果存在实数t,使f′(t)<0,则f′(2-t)•f′(
)的值( )
| 1 |
| 3 |
| 3t+1 |
| 4 |
| A、必为正数 | B、必为负数 |
| C、必为非负 | D、必为非正 |