ÌâÄ¿ÄÚÈÝ
19£®PM2.5ÊÇÖ¸´óÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³ÆÎª¿ÉÈë·Î¿ÅÁ£ÎËüÊÇÐγÉÎíö²ÌìÆøµÄÖ÷ÒªÔÒòÖ®Ò»£®PM2.5ÈÕ¾ùֵԽС£¬¿ÕÆøÖÊÁ¿Ô½ºÃ.2012Äê2ÔÂ29ÈÕ£¬¹ú¼Ò»·±£²¿·¢²¼µÄ¡¶»·¾³¿ÕÆøÖÊÁ¿±ê×¼¡·¼û±í£ºÕë¶ÔÈÕÇ÷ÑÏÖØµÄÎíö²Çé¿ö¸÷µØ»·±£²¿ÃÅ×öÁË»ý¼«µÄÖÎÀí£®Âí°°É½Êл·±£¾Ö´ÓÊÐÇø2015Äê11Ô¡«12ÔºÍ2016Äê11Ô¡«12ÔµÄPM2.5¼ì²âÊý¾ÝÖи÷Ëæ»ú³éÈ¡15ÌìµÄÊý¾ÝÀ´·ÖÎöÖÎÀíЧ¹û£®Ñù±¾Êý¾ÝÈ羥ҶͼËùʾ£¨Ê®Î»Îª¾¥£¬¸öλΪҶ£©
| PM2.5ÈÕ¾ùÖµk£¨Î¢¿Ë£© | ¿ÕÆøÖÊÁ¿µÈ¼¶ |
| k¡Ü35 | Ò»¼¶ |
| 35£¼k£¼75 | ¶þ¼¶ |
| k£¾75 | ³¬±ê |
£¨¢ò£©ÔÚ2016ÄêµÄÑù±¾Êý¾ÝÖÐËæ»ú³éÈ¡3Ì죬ÒÔX±íʾ³éµ½¿ÕÆøÖÊÁ¿ÎªÒ»¼¶µÄÌìÊý£¬ÇóXµÄ·Ö²¼ÁÐÓëÆÚÍû£®
·ÖÎö £¨1£©ÀûÓÃÆ½¾ùÊý¼ÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨2£©2016ÄêµÄ15¸öÊý¾ÝÖÐÓÐ4Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬¹ÊXµÄËùÓпÉÄÜȡֵÊÇ0£¬1£¬2£¬3£¬ÀûÓÃP£¨X=k£©=$\frac{{∁}_{4}^{3-k}{∁}_{11}^{k}}{{∁}_{15}^{3}}$¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©2015ÄêÊý¾ÝµÄÖÐλÊýÊÇ58£¬Æ½¾ùÊýÊÇ$\frac{28+31+31+41+41+44+45+58+60+61+75+77+84+92+98}{15}$¡Ö57.3
2016ÄêÊý¾ÝµÄÖÐλÊýÊÇ51£¬Æ½¾ùÊýÊÇ$\frac{17+18+23+30+39+39+49+51+52+55+58+62+63+69+70}{15}$
¡Ö46.3£®
2016Äê11Ô¡«12Ô±È2015Äê11Ô¡«12ÔÂµÄ¿ÕÆøÖÊÁ¿ÓÐÌá¸ß£®
£¨2£©2016ÄêµÄ15¸öÊý¾ÝÖÐÓÐ4Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬¹ÊXµÄËùÓпÉÄÜȡֵÊÇ0£¬1£¬2£¬3£¬
ÀûÓÃP£¨X=k£©=$\frac{{∁}_{4}^{3-k}{∁}_{11}^{k}}{{∁}_{15}^{3}}$¿ÉµÃ£º
P£¨X=0£©=$\frac{33}{91}$£¬P£¨X=1£©=$\frac{44}{91}$£¬P£¨X=2£©=$\frac{66}{455}$£¬P£¨X=3£©=$\frac{4}{455}$£®
| X | 0 | 1 | 2 | 3 |
| P | $\frac{33}{91}$ | $\frac{44}{91}$ | $\frac{66}{455}$ | $\frac{4}{455}$ |
µãÆÀ ±¾Ì⿼²éͳ¼ÆºÍÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $£¨{1£¬\sqrt{2}}]$ | B£® | $£¨{0£¬\sqrt{2}}]$ | C£® | $£¨{1£¬\sqrt{2}}£©$ | D£® | $£¨{0£¬\sqrt{2}}£©$ |