题目内容
6.设a>0,b>0,A(1,-2),B(a,-1),C(-b,0),若A,B,C三点共线,则$\frac{2}{a}+\frac{1}{b}$的最小值是( )| A. | 3+2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6 | D. | 9 |
分析 根据题意首先求出$\overrightarrow{AB}$和$\overrightarrow{AC}$的坐标,再根据两个向量共线的性质得到2a+b=1,然后结合所求的式子的结构特征利用基本不等式求出其最小值.
解答 解:由题意得:$\overrightarrow{AB}$=(a-1,1),$\overrightarrow{AC}$=(-b-1,2).
又∵A、B、C三点共线,
∴$\overrightarrow{AB}$∥$\overrightarrow{AC}$,从而(a-1 )×2-1×(-b-1)=0,
∴可得2a+b=1.
又∵a>0,b>0
∴$\frac{2}{a}$+$\frac{1}{b}$=($\frac{2}{a}$+$\frac{1}{b}$)•(2a+b)=5+($\frac{2b}{a}$+$\frac{2a}{b}$)≥5+4=9,
故选:D.
点评 解决此类问题的关键是熟练掌握向量共线与点共线之间的关系,以及两个向量共线时坐标形式的运算公式,考查基本不等式的应用,此题得到2a+b=1是解题的关键.
练习册系列答案
相关题目
17.已知3x2+y2≤1,则3x+y的取值范围是( )
| A. | [-4,4] | B. | [0,4] | C. | [-2,2] | D. | [0,2] |
1.若数列{an}的通项公式an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),{an}的最大项为第p项,最小项为第q项,则q-p等于( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
11.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ.”该过程应用了( )
| A. | 分析法 | B. | 综合法 | C. | 间接证明法 | D. | 反证法 |
18.等差数列{an}中,a4+a7+a9+a12=32,则能求出值的是( )
| A. | S12 | B. | S13 | C. | S15 | D. | S14 |
15.某位同学为了研究气温对饮料销售的影响,经过对某小卖部的统计,得到一个卖出的某种饮料杯数与当天气温的对比表.他分别记录了3月21日至3月25日的白天平均气温x(℃)与该小卖部的这种饮料销量y(杯),得到如下数据
(1)若先从这五组数据中任取2组,求取出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(2)中所得的线性回归方程,若天气预报3月26日的白天平均气温7(℃),请预测小卖部的这种饮料的销量.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| 日 期 | 3月21日 | 3月22日 | 3月23日 | 3月24日 | 3月25日 |
| 平均气温x(°C) | 8 | 10 | 14 | 11 | 12 |
| 销量y(杯) | 21 | 25 | 35 | 26 | 28 |
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(2)中所得的线性回归方程,若天气预报3月26日的白天平均气温7(℃),请预测小卖部的这种饮料的销量.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
16.已知θ为钝角,且sinθ+cosθ=$\frac{1}{5}$,则tan2θ=( )
| A. | -$\frac{24}{7}$ | B. | $\frac{24}{7}$ | C. | -$\frac{7}{24}$ | D. | $\frac{7}{24}$ |