题目内容

17.已知3x2+y2≤1,则3x+y的取值范围是(  )
A.[-4,4]B.[0,4]C.[-2,2]D.[0,2]

分析 令$\sqrt{3}$x=cosα,y=sinα,得到3x+y=2sin(α+$\frac{π}{3}$),结合三角函数的性质求出其范围即可.

解答 解:令$\sqrt{3}$x=cosα,y=sinα,
∴3x+y=$\sqrt{3}$cosα+sinα=2($\frac{\sqrt{3}}{2}$cosα+$\frac{1}{2}$sinα)=2sin(α+$\frac{π}{3}$),
由-1≤sin(α+$\frac{π}{3}$)≤1,
得:-2≤3x+y≤2,
故选:C.

点评 本题考查了三角函数的性质,考查转化思想,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网