题目内容

定义在R上的函数f(x)满足当x>0时,f(x)>1,且对任意的x、y∈R,有f(x+y)=f(x)•f(y),f(1)=2,求解不等式f(3-2x)>4.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:利用赋值法,先求出f(0),f(2)的值,再判断函数的单调性,再得到不等式解得即可.
解答: 解:∵设x=0,y=1得:f(0+1)=f(0)•f(1),
即f(1)=f(0)•f(1)
∵f(1)>1
∴f(0)=1
对x1,x2∈R,x1<x2,有x2-x1>0
∴f(x2)=f(x1+x2-x1)=f(x1)•f(x2-x1)中有f(x2-x1)>1,
由已知可,得当x1>0时,f(x1)>1>0
当x1=0时,f(x1)=1>0
当x1<0时,f(x1)•f(-x1)=f(x1-x1)=f(0)=1
又∵f(-x1)>1
∴0<f(x1)<1
故对于一切x1∈R,有f(x1)>0
∴f(x2)=f(x1)•f(x2-x1)>f(x1),
∴函数f(x)为增函数.
再令x=y=1,
得f(1+1)=f(1)•f(1),
得f(2)=4,
∵f(3-2x)>4=f(2)
∴3-2x>2
解得x<
1
2

故原不等式的解集为(-∞,
1
2
点评:本题主要考查了抽象函数表达式反映函数性质及抽象函数表达式的应用,函数单调性的定义及其证明,利用函数性质和函数的单调性解不等式的方法,转化化归的思想方法
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网