题目内容
16.已知a>b>0,则方程a2x2+b2y2=1与ax+by2=0的曲线在同一坐标系中大致是( )| A. | B. | C. | D. |
分析 根据题意,a>b>0,可以整理椭圆a2x2+b2y2=1与抛物线ax+by2=0变形为标准形式,可以判断其焦点所在的位置,进而分析选项可得答案.
解答 解:由a>b>0,
椭圆a2x2+b2y2=1,即$\frac{{x}^{2}}{\frac{1}{{a}^{2}}}+\frac{{y}^{2}}{\frac{1}{{b}^{2}}}$=1,焦点在y轴上;
抛物线ax+by2=0,即y2=-$\frac{a}{b}$x,焦点在x轴的负半轴上;
分析可得,D符合,
故选D.
点评 本题考查由椭圆、抛物线的方程判断图象的方法,注意先判断曲线的形状,再分析焦点等位置.
练习册系列答案
相关题目
6.下列有关命题的说法正确的是( )
| A. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
| D. | 命题“若x>1,则$\frac{1}{x}$<1”的逆否命题为真命题 |
4.已知f(x)是定义在R上的奇函数,对任意x>0,都有f(x+4)=f(x),若f(-2)=2,则f(2 018)等于( )
| A. | 2 012 | B. | 2 | C. | 2 013 | D. | -2 |
11.
已知正三棱柱(底面是正三角形,且侧棱与底面垂直的棱柱)ABC-A1B1C1体积为$\frac{9}{4}$,底面边长为$\sqrt{3}$.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |