题目内容

19.如图,在直三棱柱ABC-A1B1C1中,P,Q分别是AA1,B1C1上的点,且AP=3A1P,B1C1=4B1Q.
(1)求证:PQ∥平面ABC1
(2)若AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,求证:平面ABC1⊥平面AA1C1C.

分析 (1)在BB1取点E,使BE=3EB1,连结PE、QE,推导出平面ABC1∥平面PQE,由此能证明PQ∥平面ABC1
(2)推导出AB⊥CC1,BC⊥CC1,AB⊥AC,从而AB⊥平面AA1C1C,由此能证明平面ABC1⊥平面AA1C1C.

解答 证明:(1)在BB1取点E,使BE=3EB1,连结PE、QE,
∵在直三棱柱ABC-A1B1C1中,P,Q分别是AA1,B1C1上的点,且AP=3A1P,B1C1=4B1Q,
∴PE∥AB,QE∥BC1
∵AB∩BC1=B,PE∩QE=E,AB、BC1?平面ABC1
PE、QE?平面PQE,
∴平面ABC1∥平面PQE,
∵PQ?平面PQE,∴PQ∥平面ABC1
解:(2)∵在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
∴AB⊥CC1,BC⊥CC1
∵AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,
∴AB=AA1=CC1=$\sqrt{13-9}$=2,AC=$\sqrt{A{{C}_{1}}^{2}-C{{C}_{1}}^{2}}$=$\sqrt{9-4}$=$\sqrt{5}$,
∴AB2+AC2=BC2,∴AB⊥AC,
又AC∩CC1=C,∴AB⊥平面AA1C1C,
∵AB?平面ABC1,∴平面ABC1⊥平面AA1C1C.

点评 本题考查线面平行、面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网