题目内容

10.已知x1,x2是函数f(x)=2sin2x+cos2x-m在[0,$\frac{π}{2}$]内的两个零点,则sin(x1+x2)=$\frac{2\sqrt{5}}{5}$.

分析 由题意可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,运用和差化积公式和同角的基本关系式,计算即可得到所求值.

解答 解:x1,x2是函数f(x)=2sin2x+cos2x-m在[0,$\frac{π}{2}$]内的两个零点,
可得m=2sin2x1+cos2x1=2sin2x2+cos2x2
即为2(sin2x1-sin2x2)=-cos2x1+cos2x2
即有4cos(x1+x2)sin(x1-x2)=-2sin(x2+x1)sin(x2-x1),
由x1≠x2,可得sin(x1-x2)≠0,
可得sin(x2+x1)=2cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
可得sin(x2+x1)=±$\frac{2\sqrt{5}}{5}$,
由x1+x2∈[0,π],
即有sin(x2+x1)=$\frac{2\sqrt{5}}{5}$.
另解:由对称性可知$\sqrt{5}$=2sin(x2+x1)+cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
由x1+x2∈[0,π],
即有sin(x2+x1)=$\frac{2\sqrt{5}}{5}$.
故答案为:$\frac{2\sqrt{5}}{5}$.

点评 本题考查函数方程的转化思想,函数零点问题的解法,考查三角函数的恒等变换,同角基本关系式的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网