题目内容
已知数列{
}成等差数列,且a3=-
,a5=-
,则a8= .
| 1 |
| an+2 |
| 11 |
| 6 |
| 13 |
| 7 |
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:由已知条件推导出数列{
}是首项为5,公差为
的等差数列,由此能求出
=5+7×
=
,从而得到a8=-
.
| 1 |
| an+2 |
| 1 |
| 2 |
| 1 |
| a8+2 |
| 1 |
| 2 |
| 17 |
| 2 |
| 32 |
| 17 |
解答:
解:∵数列{
}成等差数列,且a3=-
,a5=-
,
∴d=
(
-
)
=
(
-
)
=
,
∵
+2×
=
,
∴
=5,
∴
=5+7×
=
,
解得a8=-
.
故答案为:-
.
| 1 |
| an+2 |
| 11 |
| 6 |
| 13 |
| 7 |
∴d=
| 1 |
| 2 |
| 1 |
| a5+2 |
| 1 |
| a3+2 |
=
| 1 |
| 2 |
| 1 | ||
-
|
| 1 | ||
-
|
=
| 1 |
| 2 |
∵
| 1 |
| a1+2 |
| 1 |
| 2 |
| 1 | ||
-
|
∴
| 1 |
| a1+2 |
∴
| 1 |
| a8+2 |
| 1 |
| 2 |
| 17 |
| 2 |
解得a8=-
| 32 |
| 17 |
故答案为:-
| 32 |
| 17 |
点评:本题考查数列中第8项的求法,是中档题,解题时要注意等差数列的性质的灵活运用.
练习册系列答案
相关题目