题目内容

13.已知△ABC,A,B,C所对的边分别为a,b,c,且acsinA<$\overrightarrow{BA}•\overrightarrow{BC}$,则(  )
A.△ABC是钝角三角形B.△ABC是锐角三角形
C.△ABC是直角三角形D.无法判断

分析 根据平面向量的数量积与三角形的内角和定理,求出A+B<$\frac{π}{2}$,判断△ABC是钝角三角形.

解答 解:△ABC中,acsinA<$\overrightarrow{BA}•\overrightarrow{BC}$,
∴acsinA<cacosB,
即sinA<cosB,
∴sinA<sin($\frac{π}{2}$-B),
∴A<$\frac{π}{2}$-B,
∴A+B<$\frac{π}{2}$,
∴C>$\frac{π}{2}$,
∴△ABC是钝角三角形.
故选:A.

点评 本题考查了平面向量的数量积与三角形内角和定理的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网