题目内容

9.已知函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),则a1+a2+…+a2n=-2n.

分析 函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),可得:a2k-1=4k-1.a2k=-4k-1.a2k-1+a2k=-2.即可得出.

解答 解:函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),
a2k-1=f(2k-1)+f(2k)=-(2k-1)2+(2k)2=4k-1.
a2k=f(2k)+f(2k+1)=(2k)2-(2k+1)2=-4k-1.
∴a2k-1+a2k=-2.
∴a1+a2+…+a2n=-2n.
故答案为:-2n.

点评 本题考查了三角函数求值、数列分组求和、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网