题目内容
在△ABC中,AC=2,BC=6,已知点O是△ABC内一点,且满足
+3
+4
=
,则
•(
+2
)= .
| OA |
| OB |
| OC |
| 0 |
| OC |
| BA |
| BC |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由于
=
+
,
=
+
,满足
+3
+4
=
,可得
=-
(
+3
).再利用数量积运算性质即可得出.
| OA |
| OC |
| CA |
| OB |
| OC |
| CB |
| OA |
| OB |
| OC |
| 0 |
| OC |
| 1 |
| 8 |
| CA |
| CB |
解答:
解:∵
=
+
,
=
+
,满足
+3
+4
=
,
∴
+
+3(
+
)+4
=
,
∴
=-
(
+3
).
∵
+2
=
-
+2
=
-3
.
∴
•(
+2
)=-
(
+3
)•(
-3
)
=-
(
2-9
2)
=-
(22-62)
=40.
故答案为:40.
| OA |
| OC |
| CA |
| OB |
| OC |
| CB |
| OA |
| OB |
| OC |
| 0 |
∴
| OC |
| CA |
| OC |
| CB |
| OC |
| 0 |
∴
| OC |
| 1 |
| 8 |
| CA |
| CB |
∵
| BA |
| BC |
| CA |
| CB |
| BC |
| CA |
| CB |
∴
| OC |
| BA |
| BC |
| 1 |
| 8 |
| CA |
| CB |
| CA |
| CB |
=-
| 1 |
| 8 |
| CA |
| CB |
=-
| 1 |
| 8 |
=40.
故答案为:40.
点评:本题考查了向量的运算法则、数量积运算性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目