题目内容
已知在等比数列{an}中,2a2=a1+a3-1,a1=1,数列{bn}满足b1+
+
+…+
=an(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn,求Sn.
| b2 |
| 2 |
| b3 |
| 3 |
| bn |
| n |
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn,求Sn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知得b1+
+
+…+
=an=2n-1,从而b1+
+
+…+
=2n-2,由此得到
=2n-1,从而bn=n•2n-1.
(Ⅱ)由bn=n•2n-1,利用错位相减法能求出数列{bn}的前n项和.
| b2 |
| 2 |
| b3 |
| 3 |
| bn |
| n |
| b2 |
| 2 |
| b3 |
| 3 |
| bn-1 |
| n-1 |
| bn |
| n |
(Ⅱ)由bn=n•2n-1,利用错位相减法能求出数列{bn}的前n项和.
解答:
解:(Ⅰ)∵等比数列{an}中,2a2=a1+a3-1,a1=1,
∴2a2=a3,∴q=
=2,
∴an=2n-1,
∴b1+
+
+…+
=an=2n-1,①
b1+
+
+…+
=2n-2,②
①-②,得:
=2n-1,
∴bn=n•2n-1.
(Ⅱ)∵bn=n•2n-1,
∴Sn=1+2•2+3•22+4•23+…+n•2n-1,③
2Sn=2+2•22+3•23+4•24+…+n•2n,④
④-③,得:
Sn=-(1+2+22+23+…+2n-1)+n•2n
=-
+n•2n
=(n-1)•2n+1.
∴2a2=a3,∴q=
| a3 |
| a2 |
∴an=2n-1,
∴b1+
| b2 |
| 2 |
| b3 |
| 3 |
| bn |
| n |
b1+
| b2 |
| 2 |
| b3 |
| 3 |
| bn-1 |
| n-1 |
①-②,得:
| bn |
| n |
∴bn=n•2n-1.
(Ⅱ)∵bn=n•2n-1,
∴Sn=1+2•2+3•22+4•23+…+n•2n-1,③
2Sn=2+2•22+3•23+4•24+…+n•2n,④
④-③,得:
Sn=-(1+2+22+23+…+2n-1)+n•2n
=-
| 1-2n |
| 1-2 |
=(n-1)•2n+1.
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
若条件p:|x+1|>2,条件q:x>a且¬p是¬q的充分不必要条件,则a取值范围是( )
| A、a≥1 | B、a≤1 |
| C、a≥-3 | D、a≤-3 |