题目内容
8.设F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点,若点F关于双曲线的一条渐近线的对称点P恰好落在双曲线的左支上,则双曲线的离心率为$\sqrt{5}$.分析 设F(c,0),渐近线方程为y=$\frac{b}{a}$x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为-1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.
解答 解:设F(c,0),渐近线方程为y=$\frac{b}{a}$x,
对称点为F'(m,n),
即有$\frac{n}{m+c}$=-$\frac{a}{b}$,
且$\frac{1}{2}$•n=$\frac{1}{2}$•$\frac{b(m-c)}{a}$,
解得m=$\frac{{b}^{2}-{a}^{2}}{c}$,n=-$\frac{2ab}{c}$,
将F'($\frac{{b}^{2}-{a}^{2}}{c}$,-$\frac{2ab}{c}$),即($\frac{{c}^{2}-2{a}^{2}}{c}$,-$\frac{2ab}{c}$),
代入双曲线的方程可得$\frac{({c}^{2}-2{a}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}{b}^{2}}{{c}^{2}{b}^{2}}$=1,
化简可得$\frac{{c}^{2}}{{a}^{2}}$-4=1,即有e2=5,
解得e=$\sqrt{5}$.
故答案为:$\sqrt{5}$
点评 本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为-1,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
18.已知函数$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,对于任意x1∈R且x1≠0,均存在唯一实数x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4个不相等的实数根,则a的取值范围是( )
| A. | (0,1) | B. | (-1,0) | C. | (-2,-1)∪(-1,0) | D. | (-2,-1) |
19.平面内的动点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≤0}\end{array}\right.$,则z=2x+y的取值范围是( )
| A. | (-∞,+∞) | B. | (-∞,4] | C. | [4,+∞) | D. | [-2,2] |
16.设复数z=-2+i(i是虚数单位),z的共轭复数为$\overline{z}$,则|(1+z)•$\overline{z}$|等于( )
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5$\sqrt{2}$ | D. | $\sqrt{10}$ |
3.若点P到直线y=3的距离比到点F(0,-2)的距离大1,则点P的轨迹方程为( )
| A. | y2=8x | B. | y2=-8x | C. | x2=8y | D. | x2=-8y |
20.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1≥0\\ y≥0\end{array}\right.$,则z=2x+y的最大值是( )
| A. | 6 | B. | 4 | C. | 2 | D. | 0 |
17.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-3,5),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则$\overrightarrow{c}$的坐标可以是( )
| A. | (-2,3) | B. | (-2,-3) | C. | (4,-4) | D. | (4,4) |
18.已知圆的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),则圆心到直线y=x+3的距离为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |