题目内容
7.已知集合A={x|(x-3)(x+1)<0},B={x|x>1},则A∩B=( )| A. | {x|x>3} | B. | {x|x>1} | C. | {x|-1<x<3} | D. | {x|1<x<3} |
分析 求出两个集合,然后求解交集即可.
解答 解:A={x|(x-3)(x+1)<0}={x|-1<x<3}),B={x|x>1},则A∩B={x|1<x<3},
故选:D
点评 本题考查集合的交集的求法,基本知识的考查.
练习册系列答案
相关题目
17.已知函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,则f(-3)=( )
| A. | -3 | B. | 21 | C. | 3 | D. | -21 |
18.已知函数$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,对于任意x1∈R且x1≠0,均存在唯一实数x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4个不相等的实数根,则a的取值范围是( )
| A. | (0,1) | B. | (-1,0) | C. | (-2,-1)∪(-1,0) | D. | (-2,-1) |
15.在平面直角坐标系中,角α的终边经过点(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则sinα的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
12.某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取2名用户,求2名用户评分小于90分的概率.
| 女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 | |
| 男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取2名用户,求2名用户评分小于90分的概率.
19.平面内的动点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≤0}\end{array}\right.$,则z=2x+y的取值范围是( )
| A. | (-∞,+∞) | B. | (-∞,4] | C. | [4,+∞) | D. | [-2,2] |
16.设复数z=-2+i(i是虚数单位),z的共轭复数为$\overline{z}$,则|(1+z)•$\overline{z}$|等于( )
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5$\sqrt{2}$ | D. | $\sqrt{10}$ |