题目内容

17.已知A,B是单位圆上的两点,O为圆心,且∠AOB=90°,MN是圆O的一条直径,点C在圆内,且满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

分析 运用向量的加减运算可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{OM}$-$\overrightarrow{OC}$)•($\overrightarrow{ON}$-$\overrightarrow{OC}$)=$\overrightarrow{OC}$2-$\overrightarrow{OC}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+$\overrightarrow{OM}$•$\overrightarrow{ON}$.再由MN是圆O的一条直径,三点共线的斜率表示,可得C在AB线段上,那么C在AB中点时,运用三角形AOB为等腰直角三角形,求得AB,可得OC的最小值,即可得到所求最小值.

解答 解由题意可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{OM}$-$\overrightarrow{OC}$)•($\overrightarrow{ON}$-$\overrightarrow{OC}$)
=$\overrightarrow{OC}$2-$\overrightarrow{OC}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+$\overrightarrow{OM}$•$\overrightarrow{ON}$.
由于MN是一条直径,可得$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}$•$\overrightarrow{ON}$=-1×1=-1,
要求$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值,问题就是求$\overrightarrow{OC}$2的最小值,
由$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),
可得C在AB线段上,那么C在AB中点时,
由三角形AOB为等腰直角三角形,可得AB=$\sqrt{2}$,
|$\overrightarrow{OC}$|=$\frac{\sqrt{2}}{2}$最小,
此时$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为$\frac{1}{2}$-0-1=-$\frac{1}{2}$,
故选:A.

点评 本题主要考查两个向量的加减法的法则,以及其几何意义,三点共线的向量表示,两个向量的数量积的运算,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网