题目内容
19.某学校要从高一年级的752名学生中选取5名学生代表去敬老院慰问老人,若采用系统抽样方法,首先要随机剔除2名学生,再从余下的750名学生中抽取5名学生,则其中学生甲被选中的概率为( )| A. | $\frac{1}{150}$ | B. | $\frac{2}{752}$ | C. | $\frac{2}{150}$ | D. | $\frac{5}{752}$ |
分析 根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断每个人入选的概率是多少.
解答 解:根据简单随机抽样与系统抽样方法的特点,得;
每个人入选的概率都相等,且等于$\frac{5}{752}$,
故选:B.
点评 本题考查了简单随机抽样与系统抽样方法的应用问题,也考查了概率的意义问题,是基础题目
练习册系列答案
相关题目
9.某路口的红绿灯,红灯时间为30秒,黄灯时间为5秒,绿灯时间为40秒,假设你在任何时间到达该路口是等可能的,则当你到达该路口时,看见不是黄灯的概率是( )
| A. | $\frac{14}{15}$ | B. | $\frac{1}{15}$ | C. | .$\frac{3}{5}$ | D. | $\frac{1}{2}$ |
10.设函数f(x)=ex(2x-3)-ax2+2ax+b,若函数 f(x)存在两个极值点x1,x2,且极小值点x1大于极大值点x2,则实数a的取值范围是( )
| A. | $({0,\frac{1}{2}})∪({2{e^{\frac{3}{2}}},+∞})$ | B. | $({-∞,\frac{1}{2}})∪({4{e^{\frac{3}{2}}},+∞})$ | C. | $({-∞,2{e^{\frac{3}{2}}}})$ | D. | $({-∞,1})∪({4{e^{\frac{3}{2}}},+∞})$ |
7.已知A,B是半径为$2\sqrt{3}$的球面上的两点,过AB作互相垂直的两个平面α、β,若α,β截该球所得的两个截面的面积之和为16π,则线段AB的长度是( )
| A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | 4 |
14.
如图,圆M和圆N与直线l:y=kx分别相切于A、B,与x轴相切,并且圆心连线与l交于点C,若|OM|=|ON|且$\overrightarrow{AC}$=2$\overrightarrow{CB}$,则实数k的值为( )
| A. | 1 | B. | $\frac{3}{4}$ | C. | $\sqrt{3}$ | D. | $\frac{4}{3}$ |
4.已知实数 $a={log_2}3{,^{\;}}b=\int_1^2{({x+\frac{1}{x}})}dx{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,则a,b,c的大小关系是( )
| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
11.已知实数$a={log_2}3{,^{\;}}b={({\frac{1}{3}})^2}{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,则a,b,c的大小关系是( )
| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
16.公差不为0的等差数列{an}的前n项和为Sn,若a6=3a4,且S10=λa4,则λ的值为( )
| A. | 15 | B. | 21 | C. | 23 | D. | 25 |