题目内容

12.在复数范围内,纯虚数i的三个立方根为-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.

分析 设出z=x+yi(x,y∈R),由题意可得(x+yi)3=i,展开等式左边后利用复数相等的条件列式求得x,y的值,则答案可求.

解答 解:设z=x+yi(x,y∈R),
由z3=i,得(x+yi)3=i,
即x3+3x2yi-3xy2-y3i=i,
∴$\left\{\begin{array}{l}{{x}^{3}-3x{y}^{2}=0①}\\{3{x}^{2}y-{y}^{3}=1②}\end{array}\right.$,
由①得,x=0或x2-3y2=0,
把x=0代入②,解得y=-1;
把x2-3y2=0代入②,得$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}}\\{y=\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\frac{1}{2}}\end{array}\right.$.
∴纯虚数i的三个立方根为:-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.
故答案为:-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网