题目内容
7.计算下列各式的值.(1)${({2\frac{7}{9}})^{\frac{1}{2}}}-{({2\sqrt{3}-π})^0}-{({2\frac{10}{27}})^{-\frac{2}{3}}}+{0.25^{-\frac{3}{2}}}$;
(2)${log_{2.5}}6.25+lg5+ln\sqrt{e}+{2^{-1+{{log}_2}3}}+{(lg2)^2}+lg5•lg2$.
分析 (1)由已知利用指数性质、运算法则求解.
(2)由已知利用对数性质、运算法则求解.
解答 解:(1)${({2\frac{7}{9}})^{\frac{1}{2}}}-{({2\sqrt{3}-π})^0}-{({2\frac{10}{27}})^{-\frac{2}{3}}}+{0.25^{-\frac{3}{2}}}$
=${(\frac{25}{9})^{\frac{1}{2}}}-1-{(\frac{64}{27})^{-\frac{2}{3}}}+{(\frac{1}{4})^{-\frac{3}{2}}}$
=${[{(\frac{5}{3})^2}]^{\frac{1}{2}}}-1-{[{(\frac{4}{3})^3}]^{-\frac{2}{3}}}+{[{(\frac{1}{2})^2}]^{-\frac{3}{2}}}$
=$\frac{5}{3}-1-\frac{9}{16}+8=\frac{389}{48}$(或写成$8\frac{5}{48}$)…(5分)
(2)${log_{2.5}}6.25+lg5+ln\sqrt{e}+{2^{-1+{{log}_2}3}}+{(lg2)^2}+lg5•lg2$
=$2+lg5+\frac{1}{2}+{2^{-1}}•{2^{{{log}_2}3}}lg2(lg2+lg5)$
=$\frac{5}{2}+(lg5+lg2)+\frac{1}{2}×3=\frac{5}{2}+1+\frac{3}{2}=5$…(10分)
点评 本题考查指数对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质、运算法则的合理运用.
练习册系列答案
相关题目
15.设关于x,y的不等式组$\left\{\begin{array}{l}3x-2y+1≥0\\ 3x-2≤0\\ 3y+2≥0\end{array}\right.$,且使z=x-2y取得最大值为( )
| A. | 2 | B. | $\frac{5}{9}$ | C. | $-\frac{7}{3}$ | D. | $\frac{5}{2}$ |
2.已知函数$f(x)=\left\{\begin{array}{l}{2^{x-1}}-2,x≤1\\-{log_2}(x+1),x>1\end{array}\right.$,且f(a)=-2,则f(a-5)=( )
| A. | $-\frac{7}{4}$ | B. | 6 | C. | -10 | D. | $-\frac{15}{8}$ |