题目内容

9.若f(x)是偶函数,且在[0,+∞)上函数$f(x)=\left\{\begin{array}{l}{({\frac{3}{4}})^x},x<1\\ 3-\frac{9}{4}x,x≥1\end{array}\right.$,则$f({-\frac{3}{2}})$与$f({{a^2}+2a+\frac{5}{2}})$的大小关系是(  )
A.$f({-\frac{3}{2}})>f({{a^2}+2a+\frac{5}{2}})$B.$f({-\frac{3}{2}})<f({{a^2}+2a+\frac{5}{2}})$C.$f({-\frac{3}{2}})≥f({{a^2}+2a+\frac{5}{2}})$D.$f({-\frac{3}{2}})≤f({{a^2}+2a+\frac{5}{2}})$

分析 根据题意,分析函数f(x)在区间[0,+∞)的单调性,由函数为偶函数可得$f({-\frac{3}{2}})$=f($\frac{3}{2}$),分析可得a2+2a+$\frac{5}{2}$=(a+1)2+$\frac{3}{2}$≥$\frac{3}{2}$,结合函数在[0,+∞)的单调性分析可得答案.

解答 解:根据题意,在[0,+∞)上函数$f(x)=\left\{\begin{array}{l}{({\frac{3}{4}})^x},x<1\\ 3-\frac{9}{4}x,x≥1\end{array}\right.$,
则函数在区间(1,+∞)上为减函数,
若f(x)是偶函数,则$f({-\frac{3}{2}})$=f($\frac{3}{2}$),
又由a2+2a+$\frac{5}{2}$=(a+1)2+$\frac{3}{2}$≥$\frac{3}{2}$,
则有f($\frac{3}{2}$)≥f(a2+2a+$\frac{5}{2}$),
即f(-$\frac{3}{2}$)≥f(a2+2a+$\frac{5}{2}$),
故选:C.

点评 本题考查函数奇偶性与单调性的综合应用,关键是分析函数在区间[0,+∞)上的单调性.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网