题目内容
7.命题“?x0∈R,x${\;}_{0}^{2}$-2x0+1<0“的否定是?x∈R,x2-2x+1≥0.分析 根据特称命题的否定是全称命题进行求解即可.
解答 解:命题是特称命题,则命题的否定是全称命题,
即:?x∈R,x2-2x+1≥0,
故答案为:
点评 本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.
练习册系列答案
相关题目
13.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于( )
| A. | 1 | B. | $\sqrt{13}$ | C. | 13 | D. | $\sqrt{7-2\sqrt{3}}$ |
12.连掷两次骰子分别得到点数m,n,则向量(m,n与向量(-1,1)的夹角θ>90°的概率是( )
| A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
19.将函数f(x)=xsinx,当${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$时,f(x1)>f(x2)成立,下列结论正确的是( )
| A. | x1>x2 | B. | x1>|x2| | C. | x1<x2 | D. | x${\;}_{1}^{2}$>x${\;}_{2}^{2}$ |