题目内容
已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=1,AC=2,BC=
,AA1=
,则球O的表面积为:( )
| 5 |
| 11 |
A、
| ||
| B、18π | ||
| C、32π | ||
| D、16π |
考点:球内接多面体,球的体积和表面积
专题:计算题,空间位置关系与距离
分析:由于直三棱柱ABC-A1B1C1的底面ABC为直角三角形,我们可以把直三棱柱ABC-A1B1C1补成四棱柱,则四棱柱的体对角线是其外接球的直径,求出外接球的直径后,代入外接球的表面积公式,即可求出该三棱柱的外接球的表面积.
解答:
解:由题意,三棱柱ABC-A1B1C1为直三棱柱ABC-A1B1C1,底面ABC为直角三角形,把直三棱柱ABC-A1B1C1补成四棱柱,则四棱柱的体对角线是其外接球的直径,
所以外接球半径为
=2,
则三棱柱ABC-A1B1C1外接球的表面积是4πR2=4π×4=16π.
故选:D.
所以外接球半径为
| 1 |
| 2 |
| 5+11 |
则三棱柱ABC-A1B1C1外接球的表面积是4πR2=4π×4=16π.
故选:D.
点评:本题考查球的体积和表面积,球的内接体问题,关键是由组合体的位置关系得到球的半径,考查学生空间想象能力,是基础题.
练习册系列答案
相关题目
已知平面向量
=(1,2),
=(x,1),如果向量
+2
与2
-
平行,那么
•(
-
)等于( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| A、-2 | ||
| B、-1 | ||
C、
| ||
D、
|