题目内容
已知数列{an}中,a1=
,an+1=
,
(1)求an;
(2)设数列{bn}的前n项和为Sn,且bn•
=1,求证:
≤Sn<1.
| 1 |
| 2 |
| 3an |
| an+3 |
(1)求an;
(2)设数列{bn}的前n项和为Sn,且bn•
| n(3-4an) |
| an |
| 1 |
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an≠0,
-
=
,由此能求出an=
.
(2)由bn=
=
=
-
,利用裂项求和法能证明
≤Sn<1.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 3 |
| 3 |
| n+5 |
(2)由bn=
| an |
| n(3-4an) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
解答:
(1)解:由已知得an≠0,
-
=
,
∵
=2,∴{
}是以2为首项、以
为公差的等差数列,
∵
=2+
(n-1)=
,
∴an=
;
(2)证明:∵bn•
=1,an=
,
∴bn=
=
=
-
,
∴Sn=1-
+
-
+…+
-
=1-
<1,
∵Sn=1-
关于n单调递增,
∴(Sn)min=S1=1-
=
,
∴
≤Sn<1.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 3 |
∵
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| 3 |
∵
| 1 |
| an |
| 1 |
| 3 |
| n+5 |
| 3 |
∴an=
| 3 |
| n+5 |
(2)证明:∵bn•
| n(3-4an) |
| an |
| 3 |
| n+5 |
∴bn=
| an |
| n(3-4an) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
∵Sn=1-
| 1 |
| n+1 |
∴(Sn)min=S1=1-
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目